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Among various generalizations of sequential monotonicity, the
quasimonotonic sequences of O. Szasz [1] play a prominent role in the
theory of L'-convergence of Fourier series. As S. A. Telyakovskii and
G. A. Fomin [27 have shown, quasimonotonic Fourier coefficients form an
important L'-convergence class.

A null sequence {a,} of real numbers is quasimonotonic if, for some
220, the sequence {a,/n*} is monotonic. For 2=0, quasimonotonicity
reduces to monotonicity.

The significance of quasimonotonic sequences is well illustrated by the
following result in [2].

THEOREM A. Ler

4o

> + Z a, cos nx (1)

n=1

be the Fourier series of some fe LY0, n). If {a,} is quasimonotonic then
IS.(f)—fl=o0(l), n- oo, (2)
is equivalent to
a,lgn=o0(1), n— o, (3)

where S,(f, x)=S,(f)=ao/2+2}_,a,cos kx and |-| denotes L'(0, n)-

norm.

A similar result is valid for the sine series.
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Recently an attempt has been made in {37 to extend the ‘?dﬂa 0
quasimonotonic sequences and, consequently, tc obtain a generalization
of Theorem A. Instead of the sequence {n*}, 2>0, W. O. Bray ang
C. V. Stanojevi¢ [3] used a regularly varying sequence {7{n)} as a gauge.
A non-decreasing sequence {7(n)} of positive numbers is regularly varving
in the sense of J. Karamata [47] if for some p =0

ey

(213 IPVR

n y(n)

A null sequence {a,} of real numbers is defined in [37 to be reguiarly
varying quasimonotonic if for some regularly varying sequence {y(#)} the
sequence {a,/7(n)} is monotonic.

In {37 the following generalization of Theorem A is proposed.

THEOREM B. Let (1) be the Fourier series of some fe L'(0, n). If {a
a regularly varying quasimonotonic sequerice, then {2} is equivalent to (3

An effort is made in [3] to prove Theorem B by estimating

154 —.{f}, where a,(f) are (c, 1)-means of the partial sums S,{ /) ei’
(1}, Apparently this is too coarse a method for such & substantia
generalization of Theorem A. (At the end of the proof of suf ﬁc*enw in {S}
there is also a typographical error that makes the rest of the proof invalid.}
In this paper we shall show that Theorem B may be further eneralized
if sharper estimations are used. For this purpose we need a non- decre asing
O-regularly varying sequence of positive numbers. A non-decreasing

sequence {R(n)} of positive numbers is O-regularly varying if

— R([4n]). . . . )
lim —([—]—) 1s finite, for +>1.
n R(lﬂ

7

A null sequence {a,} of real numbers is O-regularly varying quasi-
monotonic if for some non- decreasmg O-regularly varying sequence {R{n);
of positive numbers, the sequence {a,/R(n)} is monctonic. (Notice that the
sequence {a,} is necessarily positlve.)

We now have the following theorem.

THEOREM. Let {a,} be an O-regularly varying quasimonotonic sequence.
and for some even feL'(0,n) let f(n)=a, for n=0,1,2, ---. Then the

necessary and sufficient condition for ||S{/)—fl=0o(l}, n—oo0, is
a,lgn=0(1), n—> .
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Proof. Sufficiency. Assume that a,lgn=o0(l), n—oc. For 2>1
consider the identity

1 [~n} k

Y Y. da;D,(

[;n]—nk n+l j=n+1

fx)=S,(f, %)=

[7n]+1 n+1
—m(ﬁ[zn]—f)-i'm(ﬂn—f)
1 [4n]

[/’ﬂ] n, %ﬂak“Dk(x)_aann(x), (4)

where D, is the Dirichlet kernel. Since

4
1Dl =—lgn+0(1),  n—a,

then after taking the norm of both sides of (4), majorizing the right-hand
side, and taking » sufficiently large, we get

| [an] k 4 -
£ =S, < [m]_nk I ET (Flgﬁou))
[4n]+1 n+1
+ [),11] —n ”6[i.ll:|(f)_f“ +——_[in] - ”Gn(f)—f”

1 [4n]

4
) akﬂ(;t;lgkw(n)

[/-J’l] —h k=n+1

4
+a,., . (Flgn+0(1)>.

Majorizing the right-hand side of the last inequality we have

[in]
If=SN<2 Y |dallgk
k=n+1
[an]+1 n+1
Tin] = 100N =S+ Emmlo,() 1
1 [4n]

Dl —n Y ap lglk+ ) +o(l)+a,, lgn+1). (5)
> k=n+1
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Taking the limit superior of both sides of inequality {5) we obtain

—_ . [in]
fmif-S,(N <2Em Y ida,iigk
" G
+1m — .hm g 11(}/‘\5__;4
n r/"l‘.'}—n 7 [ind\J 77 U0
— n+l  —
+him fim fio,(f)— £ |
43 {A}]]_n n o
._!r 1 [an] 1
+ lim - gk +1) |
n i_[fn_i—;v;k_}ﬁ;‘i L 18 )M,

For j"e L'(0, m), the second and the third term in the above inequality a
o(1) as n — . The forth and the last term in the above inequality are also

o(1) as n— oc, according to our assumption 4, lg #=o0{l}, 7 — 20. ﬁE!‘v“
fore it remains to estimate the first term in the above ineguality and o
show that it is also o(1) as n — ¢, for O-regularly varying quasimonotonic
coefficients for which a, lgn=o(l}), n — oc.

From the monotonicity of the sequence {a,,. Rsﬂ)} we get

[rr] fand / a,
Y 4allgk<R([in])iglin] ¥ {4~
k=n+1 k=n-1% \ “\l")/
[/Z"] 1 \\
+ Rk)( S G iglh+ 1)
k=n~ \R( / R +1'/
Gy iinj+i \!

/
<R
(L2nDleleni{ 2o R(Liﬂ-}—l,/

+ max (apslglk+
n+lghkgin]

R([/n]) 1g[in]
S T ey
R(n} lgn e

7

=

([in]) [ (R(k+i» h
R(n) —n+1\ R(k) J

R

Taking the limit superior of both sides of the last inequality we have
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[ R([in]) lg[in] —— ,
i A4 k<lim fim i
hinkEHI a| lg k <lim O lim (4, , ; lg(n + 1))
. — R([A
+Em max  (a,, lg(k+ 1)) m 2UAnd)
n n+l<k<[in] n  R(n)
[in] 3
I Z (R(k+1)_1>_
" ok=n+1 R(k)

Recalling that lim,, (R([4n])/R(n)) is finite for 4> 1, and lim,, (Ig[}n]/lg n)
=1, and that a,lgn=0(1), n - oc, holds, we conclude that the first term
on the right-hand side of the last inequality is o(1), as » — co. It remains
to show that

Lim) (R(k +1)

lim — 1) is finite, for Ai>1. (6)
" ok 2;‘+1 \ R(k)

Indeed, from

Lin R(k) Cond R(k) _ R([n])
X (R(k—l)_‘)<k= .,1[”(1«;{-1)‘1)]— R(n)

k=n+1 n

it follows that

o [ R(k) — R([/n])
l‘i“k=§+l(1z(k—1)_l)<hin R()

(As a matter of fact the condition (6) is a necessary and sufficient condition
for a non-decreasing sequence {R(n)} of positive numbers to be an
O-regularly varying sequence.) This completes the proof of sufficiency.

Necessity. Suppose that ||S,(f)—f| =0o(1), n - o0, holds. From the
well-known inequality

IS, = 11> § 2k,

k=1
and from the fact that (a,/R(n)}], we get

a,, < R(n+k) R(n)
Ram & k2 S ray

IS.(f) =S/ =

where C is an absolute constant. Thus

R(2n)

C ay,lgn< o
a gn R()

ISAf)—f1-
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Taking the limit superior of both sides of the last inequality, the proof &f
necessity follows.

Clearlv, Theorem B is a corollary to our Theorem.
It wouid be of interest to prove a theorem corresponding to the above
result in the case of Banach space L'(7), T=R/2nZ. of complex vaiued
Lebesque integrable functions, following the ideas of complex sequential

monotonicity {5, 6].
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