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Among various generalizations of sequential monotomclty, the
quasimonotonic sequences of O. Szasz [1] play a prominent role in the
theory of L I-convergence of Fourier series. As S. A. Telyakovskii and
G. A. Fomin [2] have shown, quasimonotonic Fourier coefficients form an
important L I-convergence class.

A null sequence {an} of real numbers is quasimonotonic if, for some
'Y.?: 0, the sequence {an!n~} is monotonic. For 'Y. = 0, quasimonotonicity
reduces to monotonicity.

The significance of quasimonotonic sequences is well illustrated by the
following result in [2].

THEOREM A. Let

ao ~"2+ L an cos nx
ll=l

be the Fourier series of some f E L 1(0, n). If {an} is quasimonotonic then

(1)

is equivalent to

IISn(f) - III = 0(1),. n ---+ 00,

n -+ rx:,

(2)

(3)

where Sn(f, x) = Sn(f) = ao!2 +L~~ I ak cos kx and 11·11 denotes L 1(0, n)
norm.

A similar result is valid for the sine series.
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Recently an attempt has been made in [3] to extend the idea of
quasimonotonic sequences and, consequently, to obtain a generalization
of Theorem A. Instead of the sequence {n'}, 'l.;:: 0, W. O. Bray and
C. V. Stanojevic [3] used a regularly varying sequence L'(n)} as a gauge.
A non-decreasing sequence {i'(n)} of positive numbers is regularly varying
in the sense of 1. Karamata [4] if for some p ;:: 0

. I'([i,n])
hm If,
" )'(n)

I. > 1.

A nuli sequence {a,,} of real numbers is defined in [3 J to be regularly
varying quasimonotonic if for some regularly varying sequence {,'(n)] the
sequence {anii'(n)} is monotonic.

In [3 J the following generalization of Theorem A is proposed.

THEOREM B. Let (1) be the Fourier series ofsomefELl(O, IT). If {an} is
a regularly rarying quasimonotonic sequence, then (2) is equicalent to (3).

An effort is made in [3] to prove Theorem B by estimating
'IS,,(f) - (},,(f) !I, where o-,,(f) are (c, 1)-means of the partial sums S,,(f) of
(1). Apparently this is too coarse a method for such a substantial
generalization of Theorem A. (At the end of the proof of sufficiency in [3 J
there is also a typographical error that makes the rest of the proof invalid.)

In this paper we shall show that Theorem B may be further generalized
if sharper estimations are used. For this purpose we need a non-decreasing
O-regularly varying sequence of positive numbers. A non-decreasing
sequence {R(n)} of positive numbers is O-regularly varying if

-1' R( [;,n J). fi .
1m IS illIte.
n R(n) ,

('0 • _/

lor /. > 1,

A nul! sequence {a,,} of real numbers is O-regularly varying quasi
monotonic if for some non-decreasing O-regularly varying sequence {R(l1)}
of positive numbers, the sequence -[ a"iR(n)} is monotonic, (Notice that the
sequence -[an} is necessarily positive.)

We now have the following theorem.

THEOREM. Let -[a,,} be an O-regularly varying quasimonotonic sequence,
and for some eren f E L '(0, n) let /(n) = an for n = 0, 1, 2, .... Then the
necessary and sufficient condition for II Sn(f) - iii = o( 1), !1 -+'J:', is
an 19 n = o( 1), n -+ 0:.
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Proof Sufficiency. Assume that an 19 n = o( 1), n ---+ -:;1::'-. For 10> 1
consider the identity

where D n is the Dirichlet kernel. Since

4 .
IID"II =2 lg n + O(1),

1t
n ---+ x,

then after taking the norm of both sides of (4), majorizing the right-hand
side, and taking n sufficiently large, we get

1 Un] k (4 )
Ilf-Sn(f)ll:(Un]_nk=~+' j=~+IILlajl n:2lgj+O(1)

[~]+l n+l
+ [)] Ilu[i.n](f) - fll + ["] Ilu,,(f) -!IIon-n I1.n-n

1 [J.n] ( 4 )
+ [. ] L a k +' 2 lg k + O( 1)

I.n - n k ~ " + , 1t

+ a" +I(:2 19 n + 0(1)).

Majorizing the right-hand side of the last inequality we have

[An]

.If - Sn(f)11 :( 2 L ILlakllg k

[~]+l . n+l
+ ["] IluUn](f) - III + [. ]10",,(f) - III

M -n M -n

1 Un]

+ [/.n]-nk~~+l ak+llg(k+ l)+o(l)+an+,lg(n+ 1). (5)
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Taking the limit superior of both sides of inequality (5) we obtain

[i.n]

lim V - Sf/(f) \ ~ 21im I iL1ak llg k
n n k=n+l

-,- [/.nJ + 1 -,- ; f.n j',

+hm, ,hm W[i.nlU )-J il
n [/.nJ - n f/ -

. -,- n + 1 ,.--" (,\ "+ hm. . lIm i;G,,~; i - i i
n [AnJ-n n' • ,

_I 1 [i.n] ~

I' I - '\ . '" , ) i+ 1m I ., L, (lie + i 19(k + 1 :
n L[,uZJ -n k~n-l -i

+ lim an + llg(n + 1).
Il
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For f E L t (0, IT), the second and the third term in the above inequality are
0(1) as n --->X. The forth and the last term in the above inequality are also
o( 1) as n ---> ex, according to our assumption an Ig n = oC 1), n ---> ,:y-::, There
fore it remains to estimate the first term in the above inequality and to
show that it is also o( 1) as 11 ---+x;, for O-regularly varying quasimonotonic
coefficients for which an Ig n = o( 1),11 ---> ,x;.

From the monotonicity of the sequence {on/R(n)} we get

:<R([' ]'1 [. ,( °f/+l O[i.n]+i \
" m) g I.n JI.- (~ . , !

\R(n+l) RtL/.nJ+lj j

[in]! R(k)
+ max fa Ig{I• ...L .! '11 " i 1

'. k + 1 \", iii L i L - Rt i , 1 \
n+l~k:O:::;;[;_nJ k=n---'-l \ ..... ~K! 1;

R(Un]) 19[i.nJ .
:::; ·---·a ,,1a(n+ 1\)R(n ) 19 n n -,- . '0

+ max (ak+tlg(k+l))
n+ l':-;;;k~ [i.n]

R([.l.n]) Un] (R(k+l! .\
X • I:, , - 1 I·

R(n) k=n+ 1 \ R(K) ;'

Taking the limit superior of both sides of the last inequality we have
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- [~] -. R([An]) -. 19[}.n] -. .
lim L.. lL1akllgk~hm () .hm--·hm(a,,+!lg(n+l))

n k ~ n + ! " R n "lg n n

- -.R([).n])
+ li~ n + !~:: [An] (ak + ! 19(k + 1)) . h:;n R(n )

_._ [;.n] (R(k + 1) )
·hm L 1 .

n k~,,+ 1 R(k)

Recalling that limn (R([;.n])/R(n)) is finite for A> 1, and limn (lg[J.n]/lg n)
= 1, and that an 19 n = o( 1), 11 -+ OC, holds, we conclude that the first term
on the right-hand side of the last inequality is 0(1), as n -+ (f). It remains
to show that

Ind~ed, from

_ [;.,,] (R(k + 1)
lim L

n bn+!' R(k)
1) is finite, for A> 1. (6)

[f ( R(k) - 1) ~ [ff [1 +( R(k) -1)J = _R(:...=...[l_:n]=)
k=n+! R(k-l) k~n~l R(k-l) R(n)

it follows that

_. [2n] (R(k) ) _. R([).n])
hm L -1 ~hm .

n k~ll+l R(k-l) n R(n)

(As a matter of fact the condition (6) is a necessary and sufficient condition
for a non-decreasing sequence {R(n)} of positive numbers to be an
O-regularly varying sequence.) This completes the proof of sufficiency.

Necessity. Suppose that IISn(f) - III = 0(1), n -+ 00, holds. From the
well-known inequality

liSA!) - fII ~ i ankH,
k~!

and from the fact that (a,,/R(n))!, we get

where C is an absolute constant. Thus
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Taking the limit superior of both sides of the last inequality, the proof cf
necessity follows.

Clearly, Theorem B is a coronary to our Theorem.
It would be of interest to prove a theorem corresponding to the above

result in the case of Banach space L l( T), T = iR/2nl', of complex valued
Lebesque integrable functions, following the ideas of complex sequential
monotonicity [5,6].
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